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ABSTRACT

Probabilistic fire-weather forecasts provide pertinent information to assess fire behavior and danger of

current or potential fires. Operational fire-weather guidance is provided for lead times fewer than seven days,

with most products only providing day 1–3 outlooks. Extended-range forecasts can aid in decisions regarding

placement of in- and out-of-state resources, prescribed burns, and overall preparedness levels. We demon-

strate how ensemble model output statistics and ensemble copula coupling (ECC) postprocessing

methods can be used to provide locally calibrated and spatially coherent probabilistic forecasts of the

hot–dry–windy index (and its components). The univariate postprocessing fits the truncated normal

distribution to data transformed with a flexible selection of power exponents. Forecast scenarios are

generated via the ECC-Q variation, which maintains their spatial and temporal coherence by reordering

samples from the univariate distributions according to ranks of the raw ensemble. A total of 20 years of

ECMWF reforecasts and ERA-Interim reanalysis data over the continental United States are used. Skill of

the forecasts is quantified with the continuous ranked probability score using benchmarks of raw and cli-

matological forecasts. Results show postprocessing is beneficial during all seasons over CONUS out to two

weeks. Forecast skill relative to climatological forecasts depends on the atmospheric variable, season, loca-

tion, and lead time, where winter (summer) generally provides the most (least) skill at the longest lead times.

Additional improvements of forecast skill can be achieved by aggregating forecast days. Illustrations of these

postprocessed forecasts are explored for a past fire event.

1. Introduction

Fire-weather forecasting for decision-making is a com-

plex process that involves knowledge of atmospheric

conditions, local topography, and state of vegetation/fuels.

Wildfires are a global phenomena that occur often in

Australia, Brazil, Canada, China, Greece, Portugal,

Russia, South Africa, United States, among many other

countries (Shvidenko and Schepaschenko 2013; McGee

et al. 2015; Sharples et al. 2016; Palaiologou et al. 2018;

Moreira and Pe’er 2018; Tedim et al. 2018; Eugenio et al.

2019). Although wildfires are an integral component to

the natural ecosystem (Hutto 2008; Bowman et al. 2011),

they lead to great loss of lives, property, and vulnerable

habitats. Between 2008 and 2018, wildfires burned over

30.4 million ha of U.S. lands (NIFC 2019) andmore than

29.1 million ha of land in Canada from 2007 to 2017

(NRCAN 2019). Wildfires also generate toxic emissions

and smoke that can disperse hundreds or even thou-

sands of kilometers from a fire affecting transportation

visibility and human health (Reid et al. 2016; Black et al.

2017). In these ways, the effects of wildfires cross geo-

graphical and political boundaries making them a threat

to much of the global population.

The effects of wildfires are expected to increase as

changes in climate lead to longer fire seasons, more

frequent wildfires and lightning discharges, and larger
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fire-burned areas (Flannigan et al. 2000, 2013; Westerling

et al. 2006). Additionally, recent demographic shifts for

new residential development at the wildland–urban in-

terface further bolsters the threat that wildfires can have

on the human population (Radeloff et al. 2018). Fire-

weather forecasting may not prevent wildfires from

starting, but a skillful forecast with ample lead time could

help prevent loss of life and property by informing the

decision-making process.

Information about the uncertainty of a forecast can

provide decision-makers with a range of possible out-

comes and the amount of confidence associated with

a particular event (Krzysztofowicz 2001), which is

valuable for deciding if, when, and how many precau-

tionary measures should be taken. For fire- and land-

management agencies, these decisions could include

opting for or against performing a prescribed burn,

issuing public alerts or restrictions, prepositioning non-

local resources for reinforcement, and assessing overall

preparedness levels.

The fire-forecasting community typically relies on de-

terministic forecasts (also called point forecasts), but a

shift to probabilistic forecasts of fire-weather indices is

beginning to appear in the literature (Di Giuseppe et al.

2016; Srock et al. 2018). Probabilistic forecasts aim

to predict the uncertainty of a quantity or event of interest

in the form of full predictive probability distributions

(Gneiting andKatzfuss 2014) rather than single-valued or

point forecasts. These aforementioned studies calculated

fire indices with different forecast ensemble members

out to a maximum of 6 or 10 days ahead. However, these

forecasts are not postprocessed to account for system-

atic biases in the model and loss of skill with longer lead

times. Therefore, we focus this paper on the generation

and validation of postprocessed fire-weather forecasts

in the extended range (defined here as the time range

between 3 and 14days).

Many meteorological centers around the world are

now running numerical ensemble prediction systems to

generate probabilistic forecasts spanning lead times

of a few hours to several months. Typically, an NWP

ensemble is generated by making slight modifications

to the initial conditions, stochastically perturbing the

model physics, and sometimes by running separate en-

semble members with different physics schemes and/or

dynamic cores to create a blend of models (Buizza et al.

1999; World Meteorological Organization (WMO)

2012). Although ensemble forecasts are available

for lead times in the extended range and beyond, it can

be difficult to get skillful predictions at subseasonal to

monthly time scales (Hudson et al. 2011; White et al.

2017). At these scales, forecasts not only include influ-

ences from initial model conditions but also conditions

that evolve on slower time scales such as soil moisture

and sea surface temperatures (White et al. 2017).

Advances in data assimilation techniques, model

initialization, physics parameterizations, and spatial

and temporal resolution over the last decade now allow

researchers to explore forecasts in the middle range

between short-range weather forecasts and climate

forecasts, known as subseasonal-to-seasonal forecasts

(herein, we focus on predictions in the extended range,

which include subseasonal forecasts out to two weeks).

Even still, unmodified or raw ensemble forecasts are of-

ten underdispersive (Hamill and Colucci 1997; Raftery

et al. 2005; Stauffer et al. 2017); they do not capture the

full range of forecast scenarios and therefore yield in-

sufficient estimates of the total uncertainty associated

with a forecast. Raw ensemble forecasts are also often

biased as a result of insufficient model resolution, es-

pecially over regions of complex terrain (Stauffer et al.

2017) and from deficiencies in physical model assump-

tions and data assimilation procedures (Buizza et al.

2005). These errors become even more problematic at

longer lead times as the forecast moves farther away

from initial constraints provided by the data assimila-

tion system and as small errors in the initial conditions

compound with each forecast integration (Hamill and

Colucci 1997).

The presence of these errors necessitates statistical

postprocessing of the raw ensemble to yield calibrated

and sharp probabilistic forecasts, the overall goal of

probabilistic forecasting (Gneiting et al. 2007). Calibrated

refers to the statistical consistency between forecasts

from the predictive distribution and the corresponding

verifying observations whereas sharpness refers to the

spread of the forecast ensemble (Gneiting et al. 2007). A

well-calibrated forecast would suggest a probability of

an event that is consistent with the average proportion

of time that the event is observed, while sharpness im-

plies that the forecast is as specific (e.g., short prediction

intervals, event probabilities close to zero or one) as

possible. Herein, we focus on postprocessing methods

that use raw ensemble forecasts to generate full pre-

dictive cumulative distribution functions (CDFs) for

any grid location on the model domain which are then

turned into finite calibrated ensemble forecasts.

Some univariate statistical postprocessing methods

that are commonly used on meteorological ensemble

forecasts are Bayesian model averaging (Raftery et al.

2005), and nonhomogeneous Gaussian regression,

also referred to as ensemble model output statistics

(EMOS, Gneiting et al. 2005). These approaches use

historical forecast–observation pairs as training data

to fit regressionmodels.With these data pairs, the goal is

then to identify and correct biases in the raw ensemble
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by generating predictive distributions that do not suffer

from the same deficiencies. These methods define the

parameters of the predictive distribution for each lead

time and location. However, forecasters often want to

know how an event will unfold over several lead times or

locations, which requires multivariate statistical post-

processing. Multivariate postprocessing accounts for the

spatial and temporal correlations between lead times

and locations while preserving the initial skill gained by

the univariate postprocessing steps.

Defining the relationship between the independent

univariate predictive distributions to generate a multi-

variate ensemble can be done with a nonparametric

sampling-reordering approach. This approach samples

from a marginal predictive distribution and then re-

orders the samples at each lead time according to the

rank structure of a specified dependence template.

Some dependence templates rely on past observations

(e.g., Schaake shuffle and adaptions thereof, Schefzik

2016; Scheuerer et al. 2017; Worsnop et al. 2018), while

others rely on the raw forecast ensemble (ECC, Schefzik

et al. 2013).

In this paper, we use 11-member ensemble reforecasts

from an operational version of the ECMWF model

and reanalysis data from ERA-Interim (data described

in section 3) to generate and validate extended-range

probabilistic forecasts of the hot–dry–windy index

(HDWI) (described in section 2), which relies solely on

values of temperature, moisture, and wind speed. We

use the EMOS approach (described in section 4) to first

generate calibrated and sharp univariate predictive

distributions of meteorological variables that are used to

calculate the HDWI. We then apply a variant of the

ECC method (described in section 5) to produce co-

herent multivariate ensemble forecasts of the HDWI

and its components out to two weeks. Performance of

the postprocessing methods against raw and climato-

logical forecasts is evaluated with estimates of the skill

of the continuous rank probability scores (CRPSS) in

section 6. Examples of how the postprocessed forecasts

could be used for forecasting is discussed in section 7 and

are followed with conclusions and a discussion of the

utility of these methods for operational fire-weather

forecasting in section 8.

2. Fire-weather metric: Hot–dry–windy index
(HDWI)

HDWI and the corresponding HDWI climatology

were developed by Srock et al. (2018) and McDonald

et al. (2018), respectively based on the understanding

of how the atmosphere physically affects wildfires.

Although fuels, ignition agents, weather/climate, and

humans all affect wildfire activity, weather/climate is

the most important natural factor that influences daily

wildfire danger (Flannigan et al. 2005). Wind, tem-

perature, and moisture are the atmospheric compo-

nents that most influence the amount of fire-burned

area (Flannigan and Harrington 1988; McDonald et al.

2018). TheHDWI is a purely meteorological index that

includes these three components and was therefore se-

lected as our predictand. Of course, even in the most

fire-primed conditions, a fire will not start unless fuels

are ready and available to burn and an ignition occurs.

The intended purpose of the HDWI is to bring aware-

ness of days/locations that may encounter a lesser or

greater potential for fire based on the weather condi-

tions. Complementing it with another index that en-

compasses fuel information would be helpful, and will

be addressed in a separate study.

The HDWI (1) is the product of the maximum wind

speedU(m s21) in a layer between the surface and 500m

above ground level (AGL) and the maximum vapor

pressure deficit VPD(Pa), in that same layer. Hereafter,

we denote the maximum U and VPD found within this

vertical layer with a tilde accent. The subscript ‘‘max’’

indicates that the HDWI is calculated with the daily

maximum of ~U and
;
VPD over a 24-h period (calculation

of the dailymaxima is discussed in section 5b).With these

definitions we obtain the following:

HDWI5 ~U
max

3
;
VPD

max
(T,q). (1)

The initial calculation of
;
VPD for the HDWI (before

taking the daily maximum) is a function of temperature

T brought down adiabatically to the surface and spe-

cific humidity q, which is conserved as the parcel is

lowered to the surface. VPD is defined as the difference

between the saturation vapor pressure es and the vapor

pressure e. The VPD, in contrast to the ratio of es and e

(i.e., relative humidity), gives a better depiction of the

moisture evaporation rate that results from hot and dry

conditions and therefore the evaporative potential of

fuels (Leighly 1937; Thornthwaite 1940; Simard 1968).

The daily maxima in (1) are only calculated in section

5b, until then we focus on quantities ~U and
;
VPD that

are specific to particular times of the day.

3. Data description

a. Ensemble reforecasts

Reforecasts are based on one model version that is

generally rerun to generate past daily forecasts over a

period of decades. For our analysis, we use medium-

range reforecasts of an 11-member ensemble produced

from the Cycle43r3 version of ECMWF’s operational
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model (ECMWF2019). Initial conditions of the reforecasts

are defined by ERA-Interim analyses, while the ensemble

members are created by perturbing the initial states and

model physics of the control run (Buizza et al. 1999).

ECMWF ran the Cycle43r3 version so that it produced

reforecasts for dates corresponding to every Monday and

Thursday between 13 July 2017 and 4 June 2018 with the

0000 UTC initial conditions. For each of those dates, the

model was rerun to generate daily ensemble reforecasts

for the previous 20 years (e.g., because 4 June 2018 fell on a

Thursday, daily reforecasts for 4 June over the previous

20 years (1998–2017) were generated). We downloaded

12-hourly reforecasts of weather variables over CONUS

at a regular latitude–longitude grid of 0.758 (;80km) from

the ECMWF MARS archive system to match the resolu-

tion of the reanalysis data. Since we are postprocessing

forecasts out to week two, we downloaded data for each

date and 0000 UTC initialization out to lead times of

360h. We use the forecasted variables in Table 1 to cal-

culate the maximum VPD and the maximum U in a 500-

m layer above the surface before interpolating those

values at each location to match up with locations on the

reanalysis grid (see section 3b) via conservative regrid-

ding (Jones 1999).

b. Reanalysis

We use the same meteorological variables in Table 1

from reanalysis data to train and verify the post-

processed HDWI forecasts and forecasts of its compo-

nents. Reanalysis data are taken as the truth, because

they are a combination of the NWP model and quality-

controlled observations from weather stations, ships,

buoys, satellites, etc. through data assimilation tech-

niques (Dee et al. 2011). The major advantage of re-

analysis data is that they are available at every grid point

and integration of the NWP model, making them ideal

for comparison with reforecasts.

For the analysis herein, we use regular latitude–

longitude gridded data output from the global ERA-

Interim (ERA-I) reanalysis system of the ECMWF (Dee

et al. 2011). ERA-I data are available from 1979 to near–

real time and are output every 3h. The data have a spa-

tial resolution of ;80km (0.758). We use data every 6h

starting at 0000 UTC from 13 July 1997 (earliest year

associated with our reforecast dataset) to 4 June 2017

(latest year associated with our reforecast dataset).

4. Forecast calibration via univariate
postprocessing

The gray-shaded boxes (steps 1–9) in Fig. 1 show a

conceptual diagram of the univariate postprocessing

methods outlined throughout the subsections below.

a. Ensemble model output statistics (EMOS)

We postprocess forecasts of the HDWI components

(i.e., ~U and
;
VPD) at each forecast lead time and lo-

cation on the reanalysis grid using the EMOS approach

(Gneiting et al. 2005). The EMOS approach fits a

probability distribution model to the raw ensemble

model’s output statistics. The result is a calibrated and

sharp predictive distribution function of a continuous

weather variable that is corrected for forecast biases and

ensemble dispersion errors. Linear regression equa-

tions are used to define the first and second moments

of the distributions. EMOS, originally implemented

by Gneiting et al. (2005) to produce probabilistic

forecasts from a Gaussian predictive PDF, has since

been extended for the truncated normal, gamma,

and truncated logistic distributions (Thorarinsdottir

and Gneiting 2010; Scheuerer and Möller 2015). The
truncated distributions have a lower bound set to

zero, which makes them, along with the gamma dis-

tribution, suitable for use with nonnegative quantities

like ~U and
;
VPD.

Since the ensemblemembers of theECMWF reforecasts

are created from random perturbations to the initial

conditions, they are considered exchangeable (i.e.,

they produce equally likely scenarios of a future state

and are not systematically distinguishable from one

another; Bröcker and Kantz 2011). Because the en-

semble members are exchangeable, we use a modified

version of the original EMOS multiple linear regression

equation. This modification is based solely on the fore-

casted ensemble mean and variance instead of weighted

contributions from the individual members (Gneiting

et al. 2005). Through exploratory analysis, we found that

for most of CONUS and all seasons and lead times, data

transformation in combination with the truncated nor-

mal distribution results in a satisfactory representa-

tion of the forecast uncertainty about ~U and
;
VPD.

For this reason, we focus our analysis in the paper on a

modified version of the truncated normal distribu-

tion (modification is discussed in section 4d) and test

TABLE 1. Model variables output as ECMWF reforecasts and

used for the calculation of and postprocessing of the hot–dry–

windy index forecasts.

Model level Variables

Surface 2-m dewpoint temperature, 2-m temperature,

10-m u-wind speed component, 10-m

y-wind speed component, geopotential,

mean sea level pressure

Pressure Geopotential, specific humidity, temperature,

u-wind speed component, y-wind speed

component
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different power transformations of the data fitted to this

distribution (discussed in section 4d).

b. Training period

Training data are comprised of past forecast–observation

pairs; in our case, we use the 11-member ECMWF

reforecasts for past forecasts and ERA-I reanalysis data

as a proxy for observations. For each month/year

combination in this 20-yr forecast–observation record,

the rolling training period consists of all forecasts from

that same month and from all years excluding the

current year. The training period for each month/year

combination has ;152–171 forecast–observation

pairs given that there are two ECMWF reforecasts

per week and 19 years included in the training period.

For each forecast lead time and location, raw fore-

casts of ~U and
;
VPD from the training data are used to

calculate the ensemble statistics used in the EMOS

regression equation described next.

c. EMOS model fitting

For a given power transformation (if applicable) and

an m-member ensemble of exchangeable forecasts

f1, . . . , fm, estimates of the EMOS regression co-

efficients a, b, c, and d define the distribution mean

m and distribution variance s2 of the truncated normal

predictive distribution N 0(m, s
2). The moments of the

distribution are defined as

m5 a1 bf
mean

and s2 5 c1 dS2 , (2)

where fmean 5 1/m�m

k51fk denotes the raw ensemblemean

and S2 5 1/m�m

k51( fk 2 fmean)
2 denotes the raw ensemble

variance of the power-transformed forecasts. These pro-

cesses correspond to step 1 and step 2 in Fig. 1.

The EMOS coefficients for the distribution in (2) are

fitted by selecting the values that minimize the mean

continuous ranked probability score (CRPS; Hersbach

2000)—averaged over all forecast dates in the training

period—when evaluated with the observations in that

same training period. The CRPS is a proper scoring rule

that summarizes the sharpness and calibration of a pre-

dictive distribution (Gneiting et al. 2005; Gneiting and

Raftery 2007). CRPS is negatively oriented and is de-

fined for a given univariate predictive cumulative dis-

tribution function (CDF) F and a verifying observation

y as

CRPS(F, y)5

ð‘
2‘

[F(t)2H(t2 y)]2 dt , (3)

where H is the Heaviside step function that equals 1

when its argument $0 and equals 0 otherwise.

To fit EMOS coefficients for data transformed with a

given power transformation, we employ a closed-form

expression of the CRPS (detailed in section 4d). This step

corresponds to step 3 in Fig. 1. Power transformations

of the data (typically with an exponent j between 0

and 1) are often used to reduce skewness and achieve

spread that is independent of the forecast magnitude

(i.e., homoscedastic). However, strong transformations

FIG. 1. Schematic of the general concept of the univariate and multivariate postprocessing methods. The steps are numbered in the

order in which they are performed. Technical details for each step are discussed in sections 4 and 5. The whole process outlined in this

schematic refers to one particular month, year, lead time, and location, except for Step 14 which requires several lead times in a day to

calculate the daily maxima.
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(i.e., small j) have the negative side effect of empha-

sizing small forecast values at the expense of larger

ones (which are often more important in applications)

when the mean CRPS of the power-transformed fore-

casts and observations is calculated. We try to mini-

mize this effect by using a closed-form expression

that evaluates the CRPS on a scale that is as similar

as possible to the original (untransformed) scale. The

combination of EMOS coefficients that minimize the

mean CRPS for a given power transformation define

the m and s2 of the predictive distribution in (2). This

step corresponds to step 4 in Fig. 1. Special care is

needed to choose a closed-form expression of the CRPS

that will work for a range of candidate power trans-

formations; we detail this process next.

d. Selection of closed-form CRPS expression and
data transformation

We are not aware of any closed-form expressions

available for an arbitrary exponent j in combina-

tion with the truncated normal distribution, however,

Taillardat et al. (2016) provided a closed-form expres-

sion of the CRPS for the square root–transformed trun-

cated normal distribution. This expression represents

the CRPS of a CDF and the verifying observation on

the original scale when a predictive truncated normal

distribution is fitted to square root-transformed data

(j 5 0.5). However, exploratory analysis of our data

showed that the optimal power j can be either below

or above 0.5. It is possible to test a range of other

j exponents using the Taillardat et al. (2016) formula-

tion by first applying a pretransformation to the data.

If a power j , 0.5 or j . 0.5 is required, a pre-

transformation with an exponent h5 j/0.5 is applied to

the data and then the Taillardat et al. (2016) expression

of the CRPS for the square root-transformed truncated

normal distribution is used with the pretransformed

forecasts and observations.

We test different power transformations j 2 [0.2, 0.3,

0.4, 0.5, 1.0], which correspond to pretransformations

h 2 [0.4, 0.6, 0.8, 1.0, 2.0]. Using the training forecast

and observation pairs for each year, month, lead time,

and location, the EMOS coefficients a, b, c, and d are

selected separately for each candidate power transfor-

mation by CRPS minimization. The result is an optimal

univariate calibration for each candidate power trans-

formation. Next, we determine which of the candidate

power transformations j yields the overall best cali-

bration for each year, month, lead time, and location.

e. Selection of optimal power transformation

The optimal exponent j is also chosen by CRPS

minimization, but is performed after the best EMOS

coefficients for each candidate j are determined.

Since mean CRPS values obtained with different

pretransformations are not directly comparable, the

CRPSs have to be compared on the original scale. We

are not aware of any closed-form expression for an

arbitrary exponent j, and only 5 possible choices have

to be evaluated, so we use the sample CRPS, which is

calculated in the following steps:

1) Using the power-transformed ensemble forecasts

(for each j 2 [0.2, 0.3, 0.4, 0.5, 1.0]) from the

training period and the EMOS coefficients esti-

mated as described above, calculate the calibrated

predictive distributions according to Eq. (2) for

each candidate j. This step corresponds to step 5 in

Fig. 1.

2) Calculate a CRPS-optimal sample (e.g., Bröcker
2012) from the calibrated predictive distribution for

each j by choosingK5 20 equidistant quantile levels

tk5 (k2 0.5)/K, k5 1, . . . ,K. This step corresponds

to step 6 in Fig. 1.

3) Convert this sample of transformed forecasts back to

the original scale for each candidate j using a power

transformation exponent j21. This step corresponds

to step 7 in Fig. 1.

4) Calculate the sample CRPS (Grimit et al. 2006) from

these (inverse) power-transformed quantile forecasts

and the (untransformed) verifying observation. This

step corresponds to step 8 in Fig. 1.

After we calculate the sample CRPS using the steps

above for eachmonth, we define amonthlymean sample

CRPS by averaging the sample CRPS over all training

dates in a rolling 3-month period centered on a given

month. Monthly mean sample CRPS values are cal-

culated with the training data for each month, year,

lead time, and location, and for each candidate power

transformation. The data transformation j that pro-

duces the minimum sample CRPS is selected for that

month, year, lead time, and location. The selection of

j based on the minimum sample CRPS corresponds to

step 9 in Fig. 1.

Note that we select the power transformation based

on the minimum mean sample CRPS for each loca-

tion, year, month, lead time, and atmospheric variable
~U and
;
VPD separately. The necessity of this flexible

model approach is illustrated in Figs. 2 and 3, which

show that the optimal power transformation is de-

pendent on all of those factors. We provide a discus-

sion on how this flexible model approach could be

modified to run in an operational setting in the con-

clusion section. In either case, a flexible distribution

model may not be needed for smaller regions or

countries, but to produce the most skillful forecasts
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over all areas of CONUS and for all seasons, this ap-

proach is critical.

f. Verification of calibrated univariate forecasts

To verify that the univariate forecasts obtained with

the selected power transformation and fitted EMOS

coefficients yield calibrated probabilistic forecasts

during the verification period, we use probability in-

tegral transform (PIT) (Gneiting et al. 2007; Dawid

1984). PITs are calculated for the predictive CDFs Fi

of the square root-transformed truncated normal

distribution defined by the corresponding flexible

selection of power transformations. The Fi and its

verifying observation yi define the flexible PIT values

as Fi(yi) for each month, year, lead time, and loca-

tion. A histogram of the resulting PIT values for

all years, all locations, and for all verification days

within a given month will be uniformly distrib-

uted if the forecasts from the predictive distribution

are perfectly calibrated. Verification PIT histograms

in Fig. 4 show that the flexible predictive distribu-

tion model produces calibrated forecasts for ~U and

;
VPD; therefore, we proceed with this flexible model

framework.

5. Multivariate postprocessing

The orange-shaded boxes (steps 10–14) in Fig. 1 show

a conceptual diagram of the multivariate postprocessing

methods outlined throughout the subsections below.

a. Ensemble copula coupling (ECC)

The calculation of the HDWI involves different

weather variables ( ~U and
;
VPD) and different lead times

(daily maxima of these quantities are required). The

forecasts of ~U,
;
VPD, and subsequentlyHDWI should be

spatially and temporally coherent. Sampling-reordering

techniques, such as ECC restore dependencies between

variables, lead times, and spatial locations that were lost

in the univariate postprocessing steps. Each member of

the raw ensemble is based on a physical model and can

thus be expected to have a realistic spatial, temporal,

and intervariable structure. ECC seeks to transfer this

structure to the calibrated forecasts by imposing the

FIG. 2. Power transformation exponents selected by the flexible distribution model for
;
VPD. The middle month

of each season and two forecast horizons starting from a 0000 UTC initialization are shown. The time of day

associated with each lead time is written in parentheses.
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rank of an exchangeable raw ensemble onto samples

drawn from a postprocessed marginal predictive distri-

bution (like the flexibly transformed truncatedGaussian

distribution).

The ECC approach generates a postprocessed en-

semble of the same size, m, as the raw ensemble.

Various methods of sampling m members from the

postprocessed marginal predictive distributions in-

clude the random draw (ECC-R), transformation

(ECC-T), and the equidistant quantile (ECC-Q)

approaches (Schefzik et al. 2013). The quantization

used in the ECC-Q approach is the standard and

recommended method to generate a representative

sample of the postprocessed marginal predictive

distribution (Schefzik et al. 2013), so we proceed

with this method.

We construct the postprocessed marginal ensembles

xj,k 5 (xj,k1 , . . . , xj,km ) in the transformed space for each

lead time j and location k by samplingm quantiles from

the marginal distribution N 0 j,k that resulted from the

EMOS univariate postprocessing steps for each vari-

able, month, and year. The quantile levels are defined

in the sameway as tk in section 4e, nowwithK5m5 11.

These processes correspond to step 10 and step 11 in

Fig. 1. After back-transformation to the original data

space (step 12 in Fig. 1), xj,k is rearranged and matched

according to the rank of the raw forecast ensemble (step

13 in Fig. 1).

b. Calculating daily maxima

Recall that the reforecast data are available at 12-h

increments starting from 0000 UTC initialization out

to 2 weeks. However, the HDWI calculation calls for

themaximum value over 1200, 1800, and 0000UTC (i.e.,

daylight hours in CONUS). Therefore, we do the same

analysis for an estimate of the 1800 UTC forecast, which

we calculated as the average ~U and
;
VPD at 1200 UTC

‘‘today’’ and 0000 UTC the ‘‘next day’’. These average

forecasts likely suffer from systematic biases, but with

ERA-I reanalysis data being available at 6-h intervals,

we were able to correct any systematic biases in our

estimate of the 1800 UTC reforecast through the

postprocessing steps in sections 4 and 5. From the 1200,

1800, and 0000 UTC data, we calculate the maximum

daily ~U and
;
VPD for each postprocessed ensemble

member, which we denote as ~Umax and
;
VPDmax, re-

spectively. We then calculate the resulting product of

those values to yield the daily maximum HDWI.

FIG. 3. As in Fig. 2, but for ~U.
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Calculation of these daily maxima corresponds to step

14 in Fig. 1.

c. Verification of calibrated multivariate ensemble
forecasts

Even though the HDWI indicates a hazard for sig-

nificant fire-weather conditions, a fire will not start if

there is not an ignition. For this reason, verifying HDWI

forecasts with observed fires may result in many false

alarms. Instead, the 11 members of the ECC-Q forecasts

of ~Umax,
;
VPDmax, and HDWI were evaluated against

reanalysis data of the same variable for every date in each

year, month, and day ahead. The skill score, namely the

skill of the CRPS (CRPSS) is used to evaluate the overall

performance of the postprocessed forecasts to a defined

benchmark. While the score is negatively oriented

(smaller positive and negative values are better than

larger values), the skill score is positively oriented

so that larger positive values are better than smaller

positive or any negative values. The CRPSS is calculated

as CRPSS52[(CRPSfcst 2CRPSref)/CRPSref], where

CRPSfcst is the CRPS of the ECC-Q ensemble forecast

FIG. 4. Verification PIT histograms of (a),(b) ~U and (c),(d)
;
VPD for the middle month of each season and for two forecast horizons.

The horizontal blue line indicates uniformity.
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and CRPSref is the CRPS of the reference ensemble

forecast. Herein, we mostly consider an ensemble of

climatological forecasts as references for comparison,

but in some cases we use the raw ensemble forecast

as a reference in order to quantify the improvement

due to statistical postprocessing. A CRPSS value be-

tween 0 and 1 translates to improved forecasting skill

over the reference forecast.

6. Verification results and discussion

a. Calibration and sharpness of the raw and ECC-Q
forecasts

Wefirst quantify the performance of the postprocessed

ensemble forecasts using the methods described in the

previous sections by calculating the widths and empirical

coverages of two predictions intervals for each season.

The 83.33% and 66.66% prediction intervals shown in

Table 2 (winter) and Table 3 (summer) are bounded by

the values of the 1st and 11th and the 2nd and 10th or-

dered members of the forecast ensemble, respectively.

The widths of the prediction intervals allow one to

quantify the sharpness of the forecasts and the coverages

represent the relative frequencies of the observations

lying within those intervals (in the case of optimal cali-

bration, these frequencies would match the nominal

levels of the prediction intervals). To normalize the

widths so that we can aggregate across all CONUS

grid points, we divide the ensemble forecast widths at

each location for a given season by the corresponding

climatological widths.

Results in Tables 2 and 3 for different lead times

show that the raw ensemble is underdispersive, as in-

dicated by the narrow widths and poor coverage of the

prediction intervals. The ECC-Q forecast ensemble has

wider prediction intervals which capture more possible

observed outcomes in the future. Note that the ECC-Q

widths are still more sharp than the climatological

widths as indicated by width values less than one. For

these reasons, the coverage and therefore forecast

calibration of the postprocessed forecasts increases.

We found similar results during spring and fall (tables

are available in the online supplemental material A).

b. Skill scores of HDWI at select locations

Skill of the ECC-Q ensemble forecasts compared to

the raw ensemble forecasts is evaluated with the CRPSS

verification tool. To quantify the uncertainty of the

TABLE 2. Sharpness and calibration results for the raw ensemble and postprocessed ensemble (ECC) for day 6, 8, 10, and 12 lead times

during the winter.

83.33% prediction interval: Median width relative to

climatological width 83.33% prediction interval: Coverage (%)

Method D6 D8 D10 D12 Method D6 D8 D10 D12

Raw 0.44 0.54 0.63 0.68 Raw 69.42 72.87 75.0 76.73

ECC 0.61 0.71 0.78 0.82 ECC 84.04 83.96 84.04 84.13

66.66% prediction interval: Median width relative to

climatological width 66.66% prediction interval: Coverage (%)

Method D6 D8 D10 D12 Method D6 D8 D10 D12

Raw 0.45 0.57 0.65 0.69 Raw 52.12 55.15 57.5 59.23

ECC 0.64 0.75 0.82 0.85 ECC 67.69 67.33 67.31 67.69

TABLE 3. As in Table 2, but for the summer.

83.33% prediction interval: Median width relative to

climatological width 83.33% prediction interval: Coverage (%)

Method D6 D8 D10 D12 Method D6 D8 D10 D12

Raw 0.59 0.68 0.74 0.78 Raw 73.13 75.31 76.41 77.19

ECC 0.76 0.86 0.90 0.93 ECC 85.31 85.31 85.31 85.63

66.66% prediction interval: Median width relative to

climatological width 66.66% prediction interval: Coverage (%)

Method D6 D8 D10 D12 Method D6 D8 D10 D12

Raw 0.61 0.71 0.77 0.80 Raw 55.31 57.81 59.06 59.69

ECC 0.80 0.89 0.93 0.96 ECC 68.75 68.75 69.06 68.75
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CRPSS, we calculate 100 uniform random bootstrap

samples with replacement of the CRPSfcst and CRPSref
values. The bootstrap dataset included all CRPS values

for a given month, day horizon (there is now one fore-

cast per day–the dailymaximum), and all years. For each

bootstrap set, the same indices of the CRPSfcst and

CRPSref arrays were used to provide a fair comparison

across all locations.

Select locations to evaluate the behavior of the CRPSS

are plotted with the ERA-I reanalysis elevation in Fig. 5.

Wildfires often occur in regions surrounding these

locations, which include the Rocky Mountains, Sierra

Nevada, Great Plains, coastal areas affected by down-

slope wind-driven fires, and forested lands across

the southeastern United States, upper Midwest, and

AppalachianMountains. Peak fire season varies at these

locations. Based on a 24-yr climatology of wildfire oc-

currence (Short 2017; SPC 2019), fires are more likely to

occur during winter in central and southern Florida, late

winter and early spring in Oklahoma, spring and fall in

the Appalachians, mid-to-late spring near the upper

Midwest, and during the summer in the western United

States. Wildfires can and do occur in many other regions

across CONUS. However, these locations provide a

representative subset to explore variations in forecast

skill with elevation, location, and season.

Climatological forecasts can often provide the best

estimate of the state of the atmosphere when forecasts

from numerical weather prediction are unavailable, es-

pecially at longer lead times. We therefore compare the

CRPS values of the raw and ECC-Q forecasts to the

CRPS values of a climatological reference forecast.

Climatologies for ~Umax,
;
VPDmax, and HDWI were cal-

culated from the ERA-I reanalysis data using a 67-day

sliding window around each day of year for all available

years from 1997 to 2017. Data from these dates were

then divided into equidistant quantiles of the same size

as the ECC-Q ensemble (i.e., K 5 m 5 11 for tk
in section 4e).

The median of the CRPSS bootstrap samples of the

raw and ECC-Q HDWI forecasts using the HDWI cli-

matology as a benchmark is shown in Fig. 6 (full un-

certainty information of the ECC-Q forecasts is shown

in the online supplemental material B). At the loca-

tions in Fig. 5, the raw forecasts (dashed lines) typically

perform worse than climatology during the summer. At

some locations during the winter (e.g., Santa Maria,

California; Norman, Oklahoma; Immokalee, Florida;

Thief River Falls, Minnesota; Gap Mill, West Virginia;

Bumcreek, Idaho), the raw forecasts can perform bet-

ter than or at least as good as climatology. However,

at other locations during the winter (e.g., Paxton,

California, and Leadville, Colorado), the raw forecasts

perform worse than climatology. These results reveal

that some locations across CONUS need postprocess-

ing to improve skill over the local climatology, espe-

cially during their various peak fire seasons.

The postprocessed forecasts (solid lines in Fig. 6)

overall perform better than the raw forecasts at these

locations, especially during the summer. Postprocessing

at these locations during the spring and fall (plots

available in the online supplemental material B) also

yields improvements over the raw forecasts. These re-

sults show that statistical postprocessing is necessary to

provide the most skillful forecasts of HDWI across the

CONUS in the extended range. The skill of the ECC-Q

forecasts (relative to the climatological forecasts) de-

creases with lead time for all seasons and locations. For

winter, spring, and fall, improved skill over the clima-

tological forecasts of HDWI generally persists up to

Day 10. This increased skill for later lead times is par-

ticularly valuable for locations in the Great Plains, the

upper Midwest, the Appalachian Mountains, and the

Southeast where the corresponding peak fire seasons

FIG. 5. ERA-I reanalysis elevation (shaded, lines contoured in 50-m intervals) and the eight

locations discussed throughout the paper (black dots). Elevations above 500m are labeled in

decameters.
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occur outside of the summer. In summer, the improve-

ment degrades below climatology beyond day 8.

c. Skill scores of ~Umax,
;
VPDmax, and HDWI for all

CONUS

CRPSS values show improvements of the ECC-Q

forecasts over raw reference forecasts of HDWI over

most of CONUS (Fig. 7). Median CRPSS values of

HDWI (not shown) calculated fromusing CRPSS values

from all CONUS grid points reveal that the most

improvement over the raw forecasts happens during the

spring and winter at Day 1 (CRPSS is ;0.3). By Day 8,

the improvement (i.e., the skill) converges to;0.1 for all

seasons and then remains steady out to Day 14. Across

all of CONUS, the maximum improvement of ECC-Q

forecasts over the raw forecasts at Day 6 is;0.5 in spring

and winter.

FromFig. 7a, the areas with themost skill over the raw

reference forecasts occur in regions of complex ter-

rain across the western United States. In these areas,

FIG. 6. Median CRPSS for the raw (dashed lines) and ECC-Q forecasts (solid lines) of HDWI at the locations

shown in Fig. 5 calculated with a climatological reference. CRPSS is shown for the middle month of winter (blue

lines) and summer (red lines) and for forecast horizons out to day 14 in 2-day increments (gray rectangles). Values

above the solid black line show greater skill than the climatological forecast.
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systematic biases of wind and temperature with height

are common in raw forecasts by NWP models. Im-

provements through postprocessing are more evenly

spread across CONUS in the summer (Fig. 7b). This

result is because the raw model has a harder time fore-

casting conditions in the summer months, even away

from complex terrain (not shown). While initial good

skill of raw forecasts will translate to enhanced skill

via postprocessing, poor initial skill from systematic

biases leaves more room for improvement by the

postprocessing methods.

When comparing the ECC-Q forecasts of HDWI

to climatology, the skill gained depends on lead time

and season (Fig. 8). The median (maximum) CRPSS

FIG. 7. CRPSS values of HDWI calculated with the ECC-Q ensemble relative to a raw ensemble reference forecast for the middle

month of (a) winter and (b) summer for 6, 8, 10, and 12 days ahead. Red shaded regions indicate where the skill is improved over the raw

forecast. Black dots correspond to the locations in Fig. 5.
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values of all CONUS grid points in winter range

from.0.3 (0.45) at Day 6 to 0.05 (0.1) by Day 12 across

the majority of CONUS. Conversely, for summer, the

median (maximum) values at Day 6 are. 0.15 (0.35) and

fall to negligible improvements by Day 9, except for

Texas, Oklahoma, and Arizona. When considering im-

provement over the majority of CONUS, one could

expect skill of the HDWI out to Day 7 in the summer,

which is particularly valuable for the western U.S. fire

seasons and up to Day 11 in the winter, which is valuable

for fire predictions during the peak season in Florida.

Spring and fall show improved skill over climatology

for most of CONUS up to Day 9 (plots available in the

online supplemental material B), again adding enhanced

FIG. 8. CRPSS values of HDWI calculated with the ECC-Q ensemble and the climatological reference forecast for the middle month of

(a) winter and (b) summer for 6, 8, 10, and 12 days ahead. Red shaded regions indicate where the skill is improved over a climatological

forecast. Black dots correspond to the locations in Fig. 5.
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skill during peak fire seasons in the Great Plains, upper

Midwest, and along the Appalachian Mountains.

The daily maximum HDWI is evaluated as a whole,

but looking at the skill of the individual components can

reveal limits of predictability. The
;
VPDmax (Fig. 9) in

the winter yields the most skill relative to climatology

when compared to ~Umax (Fig. 10) or summer months

across the majority of the CONUS domain. The me-

dian CRPSS values from all grid points of
;
VPDmax is

;0.4 in the winter, spring, and fall at Day 6 and stays

above 0 out to ; Day 14 (purple, green, and gray solid

lines in Fig. 11a). For the summer (orange solid line in

Fig. 11a), the median value for
;
VPDmax by Day 6 is half

that found in other seasons. Summer median skill also

drops to zero three days earlier than the other seasons.

Although not as high as
;
VPDmax, the median skill of

~Umax (dashed lines in Fig. 11a) follows a similar seasonal

and lead-time pattern as
;
VPDmax. Median skill for

~Umax drops to 0 around Day 11 for winter, spring, and

fall, and by Day 9 for summer. Overall, when com-

paring the median skill over climatology for all of

CONUS, the
;
VPDmax yields approximately 2–3 more

days of positive skill than ~Umax.

Even though the median skill can begin to drop below

0 by Day 9 for summer and later for the other seasons,

we can expect positive skill out to Day 14 at some lo-

cations (Fig. 11b). The longest-lived high skill scores for

both variables tend to be across the western United

States in winter and across Texas and Oklahoma in the

summer. At these locations, a forecaster could utilize

FIG. 9. CRPSS values of daily maximum
;
VPD of the ECC-Q ensemble forecasts relative to a climatological

reference forecast for the middle month of (a) winter and (b) summer for 6, 8, 10, and 12 days ahead. Red shaded

regions indicate where the skill is improved over climatology. Black dots correspond to the locations in Fig. 5.
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the longevity of improved skill to make 2-week-ahead

forecasts that can be more skillful than climatology.

d. Effect of aggregating forecast days on skill scores

Not only do decision-makers need skillful forecasts

out to two weeks at select locations, they also need them

for all of CONUS, especially when making regional or

national decisions. To enhance the predictability dis-

cussed in the previous section, we aggregate forecast

days. At longer lead times, forecasts inherently strug-

gle with accurately predicting instantaneous states of

the atmosphere (Epstein 1988) and therefore must rely

on collective statistics (e.g., averages) to generate the

most skill. Even though the HDWI and its components

are not strictly instantaneous, but rather daily maxima

quantities calculated over the course of 24 h, we can still

gain more skill through further aggregation. By aver-

aging ~Umax,
;
VPDmax, or HDWI over a calendar period,

we can relieve the burden of the forecast to get the

timing of meteorological conditions just right. National

prediction centers such as the Climate Prediction Center

(CPC) and the Storm Prediction Center (SPC) already

utilize aggregated forecast days to create ‘‘outlooks’’ of

anomalous weather for a given calendar period. Notable

examples include the CPC’s 6–10 and 8–14 day tem-

perature and precipitation outlooks. We explore the

advantages and limitations of averaging ~Umax,
;
VPDmax,

and HDWI over these outlook periods.

To create a 6–10 day outlook, for each reforecast date,

we average Day 6 up to and including Day 10 ECC-Q

FIG. 10. CRPSS values of the daily maximum ~U of the ECC-Q ensemble forecasts relative to a climatological

reference forecast for the middle month of (a) winter and (b) summer for 6, 8, 10, and 12 days ahead. Red shaded

regions indicate where the skill is improved over climatology. Black dots correspond to the locations in Fig. 5.
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forecasts for each ensemble member. The same is done

for Day 8–14 outlook, but using the corresponding lead

times. Climatological reference forecasts are created in

the same way for each date of the ERA-I reanalysis

that falls within each reforecast date-outlook period

combination (e.g., if a reforecast date is Monday

9 January 2017 and the outlook period of interest is

Day 6–10, then a aggregated climatology is created using

all ERA-I reanalysis years during 15–19 January). This

process results in 20 years of average values for each

outlook period starting from each day of the year asso-

ciated with the reforecast dataset. Equidistant quantiles

(i.e., K 5 11 for tk in section 4e) from these climato-

logical averages make up the reference ensemble fore-

cast when calculating CRPSS.

When comparing the aggregated 8–14 day outlooks of

HDWI (Fig. 12) to the single-day forecasts in Fig. 8, we

see that the outlooks are comparable in skill to;Day 8

(Day 9) forecasts in winter (summer). Considering a

longer time window enhances the skill of the ECC-Q

forecasts, which is particularly valuable during summer

when the single-day forecasts of theHDWI components,
;
VPDmax (Fig. 9) and ~Umax (Fig. 10), begin diminishing

beyond Day 8 and Day 6, respectively. Overall, we can

expect strong skill over climatology across most of

CONUS for aggregated Day 8–14 (Day 6–10) HDWI

forecasts during the winter (summer). Similar to the

single-day forecasts, some locations have positive skill

for even longer aggregated forecast periods (e.g., Texas

and Oklahoma show skill at Day 8–14 for HDWI in the

summer). Aggregated forecasts during the spring and

fall show improved skill over climatology as well (plots

are available in online supplemental material C), with

the Day 8–14 HDWI forecasts not having as much

improvement as in the winter, but overall more im-

provement than in the summer.

7. Fire event case study

a. Illustration of single-day forecasts

The results in the previous sections show that statis-

tical postprocessing is advantageous to obtain skillful

extended-range forecasts of HDWI, ~Umax, and
;
VPDmax.

We now explore how these postprocessed forecasts

along with climatology can be used to generate proba-

bilistic fire-weather and fire-indicator forecasts for a real

fire event. We created the images in Fig. 13 based on the

climatology figures in McDonald et al. (2018) and the

type of figure used in the experimental web version of

the HDWI (HDWI 2019). However, there are some key

differences. We calculate the climatology with ERA-I

reanalysis data while their climatology was produced

with the Climate Forecast System Reanalysis (CFSR,

Saha et al. 2010) dataset. Because these datasets differ

in resolution (0.758 grid spacing compared to their 0.58),
model physics, and data assimilation schemes, the

weather produced in each of these datasets should not

be compared. Therefore, this case study illustrates a new

climatological dataset for HDWI, ~Umax, and
;
VPDmax.

These climatologies can be used to infer the severity of

HDWI, ~Umax, and
;
VPDmax quantities forecasted by the

ECMWF model with the same grid spacing. Another

difference between their analysis and ours is that we not

only look at the HDWI, but also the individual compo-

nents ~Umax and
;
VPDmax. Last, we extend our forecasts

out to two weeks.

The climatology for HDWI, ~Umax, and
;
VPDmax in

Fig. 13a is calculated the same way as in section 6a

using a 67-day sliding window around each day of the

year and all available years between 1997 and 2017.

Instead of separating the daily climatological distribu-

tions into equidistant quantiles, we evaluate the 0.25,

0.50, 0.75, 0.90, and 0.95 quantiles levels. The daily

FIG. 11. (a) The median and (b) the 99th percentile of all CRPSS values in CONUS for day 1–14.
;
VPDmax( ~Umax)

values are shown for themiddlemonths of each season in solid (dashed) lines. The reference forecast is climatology.

Values above the black horizontal line show greater skill than climatological forecasts.
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climatology of theHDWI, ~Umax, and
;
VPDmax are shown

(Fig. 13a) at the location of the Heartstrong fire, which

ignited on 18 March 2012 in Yuma County, Colorado

(the location is marked as the black dot in Fig. 12). The

climatologies show a strong seasonal cycle. At this lo-

cation, the peak HDWI and
;
VPDmax happen during

June and July while ~Umax is at its minimum. Since these

climatologies depend on location and time of year,

they are helpful to assess if a particular HDWI, ~Umax,

and
;
VPDmax forecast is high for that day and location.

On the day of ignition, the fire burned approximately

10 000ha leading to three firefighter injuries, two de-

stroyed homes, and loss of livestock (Gabbert 2012).

The fire was most threatening on 18 March, as fire-

fighters achieved 100% containment by the next day.

The developers of the HDWI intended for the index

to alert a forecaster to days that need to be looked at

further to understand themeteorological conditions that

may make a fire difficult to manage. Figure 13b illus-

trates why this more in-depth analysis is necessary. The

Heartstrong fire occurred over cured western perennial

grasslands during a surge in wind speed (. 95th per-

centile) that followed several days of anomalously

high (. 95th percentile)
;
VPDmax. Although most of

the HDWI ECC-Q ensemble members showed spikes

during this day, inclusion of the individual compo-

nents helps explain why there is a peak. Knowing which

factors may dominate the fire conditions could help fire

managers decide on the best mitigation and suppression

tactics.

For this case, the postprocessed ensemble members

also performed better than the raw forecasts (Fig. 13b).

While the ECC-Q and raw members are similar in

shape, the magnitude of the postprocessed forecasts are

closer to the reality of the event, especially for
;
VPDmax.

b. Illustration of aggregated forecast outlooks

Postprocessed probabilistic forecasts of HDWI are

also shown for aggregated forecast outlooks (Fig. 14)

to illustrate how these outlooks could be used by a fire-

weather forecaster. Similar figures for ~Umax, and
;
VPDmax

are available in the online supplemental material C.

For each forecast day (e.g., 11 March 2012 in Fig. 14a),

lead times from a defined calendar period/time scale

(e.g., Day 4–8 ahead in Fig. 14a) are averaged for each

variable and ensemble member separately. ERA-I cli-

matologies of these variables and calendar periods are

calculated by taking the average during the same cal-

endar period as the forecast (e.g., 15–19 March in

Fig. 14a) for every year in the 20-yr record. The resulting

climatological distribution is separated into terciles

representing the lower, middle, and upper thirds of the

climatology for that start date and calendar period. The

members of the aggregated mean forecast are then

FIG. 12. CRPSS values of HDWI for the middle month of (a),(b) winter and (c),(d) summer. The CRPSS was

calculated with averaged ECC-Q ensemble forecasts and averaged climatological reference forecasts for two

calendar periods: day 6–10 and day 8–14. Red shaded regions indicate where the skill is improved over climatology.

The black dot in northeast Colorado marks the location of the Heartstrong fire discussed in section 7.

516 MONTHLY WEATHER REV IEW VOLUME 148

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/06/21 06:00 PM UTC



marked according to where they fall in the categories:

lower (#33.3%), middle, or upper ($66.6%) tercile of

the aggregated climatology. Based on the percentage of

aggregated forecast members that fall into those cate-

gories (see Table 4) determines whether the aggregated

forecast is labeled as ‘‘above normal’’, ‘‘below normal’’,

or ‘‘normal/equal chance.’’ Equal chance is assigned

when the probability of the forecast being above or

below normal is indistinguishable. Both normal and

equal chance categories are masked out as white in the

forecast probability plots in Fig. 14. Comparisons with

observed anomalies (i.e., did the average observation

during the same calendar period fall in the upper, mid-

dle, or lower tercile of climatology) detail how well the

forecasted anomalies did (Fig. 14).

For the 11 March 2012 case in Figs. 14a and 14c, the

forecasted probabilities of anomalous HDWI values

performed well. The forecasted pattern of above normal

and below normal values matches the pattern of ob-

served anomalies for HDWI, owing to the good per-

formance of its components, especially that of
;
VPDmax.

The forecast also has high confidence (represented by

dark red and blue colors in the left panel in Fig. 14a)

in the outcome. As the calendar period includes later

lead times, Day 8–14, the confidence in the upcoming

anomalies decreases, but the overall forecasted pattern

matches the observed pattern, except for ~Umax. For the

12 July 2012 case in Figs. 14b and 14d, the overall pattern

of forecasted anomalies matches the observed anoma-

lies for Day 4–8, but as expected, is less confident than

the winter case (mostly because of the performance
~Umax). The Day 8–14 forecasted anomalies give an idea

of below normal HDWI in the western United States,

but for this case, a decision-maker should not put

too much weight on the forecast to make decisions

until the forecast becomes more confident. In both

FIG. 13. (a) Percentiles of the daily ERA-I climatology of (top) HDWI, (middle) ~Umax, and (bottom)
;
VPDmax at the location of the

Heartstrong fire. (b) ECC-Q ensemble (blue lines) and raw ensemble (red lines) forecasts of the (top) HDWI, (middle) ~Umax, and

(bottom)
;
VPDmax compared to percentiles of the ERA-I climatology (shaded colors). The ERA-I reanalysis is also displayed by the black

dotted line. The start day of the forecast is indicated by the gray dashed line, and the start day of the fire is shown as the yellow triangle.

Bold red and blue lines indicate the control ensemble member.
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cases, although forecast confidence decreases with

later lead times, aggregating the forecast days mostly

yields the overall pattern of above and below normal

fire-weather conditions for the coming weeks. This

information is valuable to fire- and land-management

agencies to make decisions regarding where to focus

their attention on across CONUS and how many re-

sources may be needed.

8. Conclusions

We employed univariate and multivariate statistical

postprocessing methods to generate skillful forecasts of

the HDWI, ~Umax, and
;
VPDmax out to two weeks ahead.

We first corrected biases in the 20 years of reforecasts

for each lead time, month, year, and location separately

using the EMOS method. The EMOS regression co-

efficients were selected based on theminimization of the

CRPS of the truncated normal distribution (with dif-

ferent power transformations applied to the data). Be-

cause the climatologies of ~U and
;
VPD vary throughout

CONUS, no single power transformation was optimal.

For this reason, we allowed for a flexible distribution

model that is based on the optimal power trans-

formation for each particular lead time, month, year,

location, and atmospheric variable. Minimum CRPS

values and uniform PIT histograms verified that the

flexiblemodel is an appropriate distribution to represent
~U and
;
VPD. We then applied the multivariate ECC-Q

approach to generate spatially and temporally coherent

forecast scenarios across lead times. This approach used

the ranks of the raw ensemble members to define the

dependence template that links quantiles of the uni-

variate predictive distributions across lead times.

Skill of the CRPS showed that the above post-

processing techniques yield improvements over the

raw forecasts of HDWI, ~Umax, and
;
VPDmax and also over

the corresponding climatological forecasts. Generally,

there was more skill of the postprocessed forecasts rel-

ative to climatology in the winter, spring, and fall than in

the summer. Similarly, there was more skill for
;
VPDmax

than for ~Umax. However, even during the summer, the

median forecast skill for a single day forecast was

positive out toDay 9 (Day 8) for
;
VPDmax ( ~Umax). Some

locations maintained positive skill up to Day 14. We

found that even more forecast skill is possible by ag-

gregating lead times together for different lengths of

calendar periods. This approach minimized timing errors

and would allow a decision-maker to evaluate the gen-

eral meteorological conditions up to two weeks ahead.

FIG. 14. Probability of HDWI being above (red colors), below (blue colors), or normal/equal chance (white) compared to climatology

[left panels in (a)–(d)] for two aggregated calendar periods. Also shown are observed exceedances of climatology (red above, blue below,

white normal) of HDWI [right panels in (a)–(d)] for the same aggregated calendar periods. The two calendar periods are (a),(b) day 4–8

and (c),(d) day 8–14 for (a),(c) a winter case and (b),(d) a summer case.

TABLE 4. Climatological categories for the aggregated ensemble

forecasts. Categories are assigned based on the percentage of en-

semble members that fall into the upper and lower terciles of

climatology.

Category

Percentage of members

in the upper tercile of

climatology

Percentage of members

in the lower tercile of

climatology

Above normal $33.3% #33.3%

Normal #33.3% #33.3%

Equal chance $33.3% $33.3%

Below normal #33.3% $33.3%

518 MONTHLY WEATHER REV IEW VOLUME 148

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/06/21 06:00 PM UTC



Aggregating the forecasts for a calendar period of

8–14days ahead oftenwas equivalent to aDay 9 single-day

forecast.

We then illustrated how these single-day forecasts

and aggregated forecast outlooks of HDWI, ~Umax, and;
VPDmax could be visualized and used by a forecaster.

The single-day forecast figure showed the ECC-Q

forecasts and raw forecasts for a past fire event com-

pared to percentiles of climatology. Visualizing not only

the HDWI, but also its components ~Umax and
;
VPDmax

(and likely other weather variables too), details the

meteorological conditions that would drive a potential

fire. This information is critical for wildfire mitigation

and suppression strategies. We also showed how the

enhanced skill from aggregating forecast lead times

could be used to predict probabilistic HDWI, U, and

VPD anomalies. The inclusion of later lead times in the

aggregating calendar period made the forecast confi-

dence decrease. However, we found that the overall

pattern of climatological anomalies was still apparent

and could be useful for decision-makers that want to

see not only what the conditions two weeks ahead look

like, but also how confident the ECC-Q forecasts are in

that result.

The goal of this paper was to use statistical post-

processing methods to generate skillful extended-range

forecasts of a fire-weather indicator (and its compo-

nents) used by the fire community. We also wanted to

show the limits of predictability of each of these vari-

ables. Based on these results, it is likely that forecasts

from other similar fire-weather indicators would benefit

from postprocessing as well.

If these data, variables, and methods were used in an

operational setting, one could ensure that the forecast

skill never drops below climatology by making a couple

of changes. For the lead times that have skill below cli-

matology, instead of using the EMOS method and

truncated square root-transformed normal distribution,

one could simply use quantiles of climatology for these

select lead times. The multivariate method to generate

forecast scenarios would be the same. A forecaster may

also wish to know what the fire-weather conditions will

be for a large region rather than a local forecast. One

could spatially aggregate the postprocessed ensemble

members in the end, which gives the option of local or

regional forecasts.

Additionally, recall that we fit the flexible distri-

bution model during the EMOS steps for each vari-

able, location, year, month, and lead time separately.

In an operational setting, instead of using all dates

from the current month and year (which in real time

would not be available except on the last day of a

given month), one could use the hindcasts associated

with the last 8–10 reforecast dates (i.e., if using

ECMWF reforecasts which are available twice per

week) to fit the model. This ensures that there are

enough training data to fit the model that are similar

to the current date. The computational expense would

also be substantially smaller than what was used in this

research study, because in real-time, cross validation

would not be necessary.

While this paper focused on the HDWI and its com-

ponents, other meteorological variables as well as veg-

etation data could play a role in even more skillful

extended-range fire forecasts. We intend to analyze this

point in a follow-up project.
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